Math 115 Line 22709 Exam 2 Nov. 15, 07

Name: \qquad I.D.

1. (10 points) True or False problems (circle your answer)
(i) If $x=c$ is a critical point of $f(x)$, then $f^{\prime}(c)=0 . \quad \mathrm{T} \quad \mathrm{F}$
(ii) If $f(c)$ is a relative extrema of $f(x)$, then $x=c$ is a critical point of $f(x)$. T F
(iii) If c is a critical point of $f(x)$, then $f(c)$ may not be an absolute extrema. $\mathrm{T} \quad \mathrm{F}$
(iv) If $f^{\prime \prime}(c)=0$, then $(c, f(c))$ is an inflection point. $\mathrm{T} \quad \mathrm{F}$
(v) Any continuous function on $(0,1)$ must have an absolute minimum and an absolute maximum on $(0,1)$. T F
2. (10 points) Determine the horizontal and vertical asymptotes of $f(x)=\frac{1-3 x^{2}}{x^{2}-3 x+2}$.
3. (10 points) Solve for x where $\ln (x+1)+\ln (x+6)=\ln x+\ln 12$.
4. (10 points) Find the derivatives of
(a). $\quad f(x)=x e^{x^{2}-1}$
(b). $g(x)=\ln \frac{(x-1)^{7} \sqrt{x+1}}{x^{2}+1}$.
5. (10 points) Use the 2nd-D Test to determine the relative extrema of the function

$$
f(x)=x^{3}-6 x^{2}-15 x+2 .
$$

6. (10 points) Let $f(x)=x e^{x}$. Find the intervals of increasing and decreasing of f and the relative extrema of f.
7. (10 points) Let $f(x)$ be the function in Problem 6. Find the intervals of concavity of f and the inflection points of the graph of f.
8. (10 points) Find the absolute extrema of $f(x)=3 x^{2 / 3}-2 x$ on the interval $[0,8]$.
9. (10 points) A rectangle region is to be enclosed with a fence of total length 20 feet. Find the length x and the width y of the rectangle that has the maximal area.
10. (10 points) A right circular cylinder of volume 40π cubic feet is to be constructed. If the material for the base and the top costs 5 dollars per square feet, and the material for the side costs 2 dollars per square feet. Determine the radius and height of the cylinder to minimize the cost.
