Math 115 Sample Final Exam

The final exam will consist of 30 Multiple-Choice problems. The practice problems below are intended to be representative of what might appear on the actual exam.

Multiple-Choice Problems

1. Let $f(x)=\frac{\sqrt{x+1}}{x-2}$. The domain of f is
(A) $(-\infty, 2)$ and $(2,+\infty)$
(B) $(-\infty, 2]$ and $[2,+\infty)$
(C) $[-1,2)$ and $(2,+\infty)$

$$
\text { (D) }[-1,+\infty) \quad \text { (E) None of the above }
$$

2. Let $f(x)=\frac{x}{x^{2}+1}$ and $g(x)=\frac{1}{x}$. Then, $(g \circ f)(x)$ is
(A) $\frac{x}{x^{2}+1}$
(B) $\frac{1}{x}$
(C) $x+\frac{1}{x}$
(D) x
(E) None of the above
3. Evaluate $\lim _{x \rightarrow 5} \frac{x^{2}-2 x-15}{x-5}$.
(A) 3
(B) 8
(C) 0
(D) Does not exist
(E) None of the above
4. Find the horizontal asymptotes of function $f(x)=\frac{\sqrt{x^{4}+1}}{1+4 x^{2}}$.
(A) $y=1$
(B) $y=\frac{1}{4}$
(C) $x=1$
(D) No horizontal asymptotes
(E) None of the above
5. Find the vertical asymptotes of function $f(x)=\frac{2+x}{(1-x)^{2}}$.
(A) $x=-2$
(B) $x=1$
(C) $y=0$
(D) No vertical asymptotes
(E) None of the above
6. Suppose that $F(x)=f(x)^{2}+1, \mathrm{f}(1)=1$, and $f^{\prime}(1)=3$. Find $F^{\prime}(1)$.
(A) 3
(B) 4
(C) 5
(D) 6
(E) None of the above
7. The unit price p and the quantity x demanded are related by the demand equation $50-p\left(x^{2}+1\right)=0$. Find the revenue function $R=R(x)$.
(A) $\frac{50 x}{x^{2}+1}$
(B) $\frac{50}{x^{2}+1}$
(C) $\frac{x}{x^{2}+1}$
(D) $\frac{x^{2}+1}{50}$
(E) None of the above
8. Find the marginal revenue for the revenue function found in Problem 7.
(A) $\frac{-100 x}{\left(x^{2}+1\right)^{2}}$
(B) $\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}$
(C) $\frac{x}{25}$
(D) $\frac{50\left(1-x^{2}\right)}{\left(x^{2}+1\right)^{2}}$
(E) None of the above
9. The line tangent to $y=x^{2}-3 x$ through the point $(1,-2)$ has the equation
(A) $y=x-3$
(B) $y+2=(2 x-3)(x-1)$
(C) $y=-x-1$
(D) $y-2=(2 x-3)(x-1)$
(E) None of the above
10. Find an equation of the tangent line to the graph of $y=\ln \left(x^{2}\right)$ at the point $(2, \ln 4)$.
(A) $y=x+2-\ln 4$
(B) $y=\frac{2}{x}(x-2)-\ln 4$
(C) $y=\frac{2}{x}(x-2)+\ln 4$
(D) $y=x-2+\ln 4$
(E) None of the above
11. Find $\frac{d y}{d x}$ in terms of x and y when x and y are related by the equation $x^{1 / 3}+y^{1 / 3}=1$.
(A) $-\left(\frac{x}{y}\right)^{2 / 3}$
(B) $-\left(\frac{y}{x}\right)^{2 / 3}$
(C) $-\left(\frac{x}{y}\right)^{1 / 3}$
(D) $-\left(\frac{y}{x}\right)^{1 / 3}$
(E) None of the above
12. A 10 -foot long ladder is leaning against a wall. If the bottom of the ladder is pulled away from the wall at a rate of 3 feet per second, how fast (in feet per second) is the top of the ladder sliding down the wall when the bottom of the ladder is 6 feet from the wall?
(A) $7 / 4$
(B) $3 / 2$
(C) $9 / 4$
(D) $3 / 8$
(E) $7 / 2$
13. The absolute extrema of the function $f(x)=\frac{1}{2} x^{2}-2 \sqrt{x}$ on [0,3] are
(A) absolute min. value: $-\frac{3}{2}$; absolute max. value: $\frac{9}{2}-2 \sqrt{3}$
(B) absolute min. value: 0; absolute max. value: 3
(C) absolute min. value: 0; no absolute max. value
(D) no absolute min. value ; absolute max. value: 3
(E) None of the above
14. Find the absolute extrema of the function $f(t)=t e^{-t}$.
(A) absolute min. value: 0; absolute max. value: $\frac{1}{e}$
(B) absolute min. value: 0; no absolute max. value
(C) no absolute min. value ; absolute max. value: $\frac{1}{e}$
(D) no absolute min. value ; no absolute max. value
(E) None of the above
15. Let $f(x)=\frac{1}{3} x^{3}-x^{2}+x-6$. Determine the intervals where the function is increasing and where it is decreasing.
(A) increasing on $(-\infty, 1)$ and on $(1, \infty)$
(B) increasing on $(-\infty, 1)$ and decreasing on $(1, \infty)$
(C) decreasing on $(-\infty, 1)$ and increasing on $(1, \infty)$
(D) decreasing on $(-\infty, 1)$ and on $(1, \infty)$
(E) None of the above
16. Let the function f be defined in Problem 15. Find the intervals where f is concave upward and where it is concave downward.
(A) concave upward on $(-\infty, 1)$ and on $(1, \infty)$
(B) concave upward on $(-\infty, 1)$ and downward on $(1, \infty)$
(C) concave downward on $(-\infty, 1)$ and upward on $(1, \infty)$
(D) Concave downward on $(-\infty, 1)$ and on $(1, \infty)$
(E) None of the above
17. Let the function f be defined in Problem 15. Find the inflection points, if any.
(A) $(x, y)=(1, f(1))$
(B) $(x, y)=\left(\frac{1}{2}, f\left(\frac{1}{2}\right)\right)$
(C) $(x, y)=(0, f(0))$
(D) No inflection points
(E) None of the above
18. Let $f(x)=x \ln x$. Determine the intervals where the function is increasing and where it is decreasing.
(A) increasing on $\left(-\infty, \frac{1}{e}\right)$ and decreasing on $\left(\frac{1}{e}, \infty\right)$
(B) decreasing on $\left(-\infty, \frac{1}{e}\right)$ and increasing on $\left(\frac{1}{e}, \infty\right)$
(C) increasing on ($0, \frac{1}{e}$) and decreasing on $\left(\frac{1}{e}, \infty\right)$
(D) decreasing on $\left(0, \frac{1}{e}\right)$ and increasing on $\left(\frac{1}{e}, \infty\right)$
(E) None of the above
19. Suppose that f is defined in Problem 18. Determine the intervals of concavity for the function.

$$
\text { (A) concave upward on }(0, \infty)
$$

(B) concave downward on $(0, \infty)$
(C) concave upward on ($0, \frac{1}{e}$); concave downward on $\left(\frac{1}{e}, \infty\right)$
(D) concave downward on $\left(0, \frac{1}{e}\right)$; concave upward on $\left(\frac{1}{e}, \infty\right)$
(E) None of the above
20. Suppose that f is defined in Problem 18. Find the inflection points, if any.
(A) $(x, y)=\left(\frac{1}{e}, f\left(\frac{1}{e}\right)\right)$
(B) $(x, y)=(1, f(1))$
(C) $(x, y)=(e, f(e))$
(D) No inflection points
(E) None of the above
21. Find the derivative of function $y=10^{x}$. (Hint: use logarithmic differentiation.)
(A) $y^{\prime}=10^{x} \ln 10$
(B) $y^{\prime}=10^{x}$
(C) $y^{\prime}=10^{x} \ln e$
(D) the derivative does not exist
(E) None of the above
22. For $f(x)=\frac{\left(x^{3}+x+1\right)^{1 / 3}(2 x+3)}{\left(x^{2}+1\right)^{2}}$, calculate $f^{\prime}(0)$. (Hint: Use logarithmic differentiation.)
(A) $11 / 3$
(B) $10 / 3$
(C) 3
(D) $8 / 3$
(E) $7 / 3$
23. An open box is to be made from a square sheet of tin measuring $12 \mathrm{in} . \times 12 \mathrm{in}$. by cutting out a square of side x inches from each corner of the sheet and folding up the four resulting flaps. To maximize the volume of the box, x should be
(A) 1 in .
(B) 2 in.
(C) 3 in.
(D) 4 in.
(E) None of the above
24. Postal regulations specify that a parcel sent by parcel post may have a combined length and girth of no more than 108 inches. Find the dimensions of the cylindrical package of greatest volume that may be sent through the mail. (In the answers, r is the radius and l is the length.)
(A) $r \times l=\frac{35}{\pi} \times 37$
(B) $r \times l=\frac{36}{\pi} \times 36$
(C) $r \times l=\frac{37}{\pi} \times 35$
(D) $r \times l=\frac{38}{\pi} \times 34$
(E) None of the above
25. The velocity of a car (in feet/second) t seconds after starting from rest is given by the function $f(t)=2 \sqrt{t}(0 \leq t \leq 30)$. Find the car's position at any time t.
(A) $\frac{4}{3} t^{3 / 2}+C$
(B) $\frac{4}{3} t^{3 / 2}$
(C) $\frac{4}{3} t^{1 / 2}+C$
(D) $\frac{4}{3} t^{1 / 2}$
(E) None of the above
26. Evaluate $\int\left(\sqrt{x}-2 e^{x}\right) d x$.
(A) $\frac{2}{3} x^{3 / 2}-2 e^{x}$
(B) $\frac{2}{3} x^{3 / 2}-2 e^{x}+C$
(C) $\frac{3}{2} x^{2 / 3}-2 e^{x}$
(D) $\frac{3}{2} x^{2 / 3}-2 e^{x}+C$
(E) None of the above
27. Evaluate $\int x e^{-x^{2}} d x$.
(A) $-e^{-x^{2}}+C$
(B) $-\frac{1}{2} e^{-x}+C$
(C) $\left(1-2 x^{2}\right) e^{-x^{2}}+C$
(D) $-\frac{1}{2} e^{-x^{2}}+C$
(E) None of the above
28. Calculate $\int_{1}^{8}\left(4 x^{1 / 3}+\frac{8}{x^{2}}\right) d x$.
(A) 49
(B) 50
(C) 51
(D) 52
(E) None of the above
29. Evaluate $\int_{0}^{3}|1-x| d x$.
(A) $3 / 2$
(B) $5 / 2$
(C) $7 / 2$
(D) $9 / 2$
(E) None of the above
30. Find the area of the region under the graph of function $f(x)=x^{2}$ on the interval $[0,1]$.
(A) $\frac{1}{2}$
(B) $\frac{1}{3}$
(C) $\frac{1}{4}$
(D) $\frac{1}{5}$
(E) None of the above

