## Exam 1, Mathematics 121 Fall 2007

Name:
Show all work for full credit. Please be very neat and clear in your steps.
1.a.(10 points) Use the definition of the derivative to find $f^{\prime}(4)$ when $f(x)=\frac{1}{x+2}$
b. (3 points) Find an equation of the tangent line at ( $4, \frac{1}{6}$ )
2.(10 points) Consider the function $f(x)=5 x^{5}+3 x^{4}+1$. Find an integer n such that $f(n)<0$ and $f(n+1)>0$. Show that there is a real number $c$ such that $n<c<n+1$ and $f(c)=0$ (name the theorem used)
3.(3 points each) State either T (True) of F (False) for the following statements.
(T)(F) If $\lim _{x \rightarrow 2^{+}} f(x)=\pi$ and $\lim _{x \rightarrow 2^{-}} f(x)=3.1415926$, then $\lim _{x \rightarrow 2} f(x)=\pi$ and f is continuous at $x=2$.
(T)(F) If $\lim _{x \rightarrow 2^{+}} f(x)=\pi$ and $\lim _{x \rightarrow 2^{-}} f(x)=3.14$, then $\lim _{x \rightarrow 2} f(x)$ does not exist and f is not continuous at $x=2$.
(T)(F) All polynomial functions are continuous functions.
(T)(F) $f(x)=\frac{1}{x^{2}-1}$ is continuous everywhere except $x=1$.
4. (15 points) Consider the function $f$ defined by the following graph.

(a) $f$ is not continuous at $x=$ $\qquad$ .
(b) $f$ does not have a derivative at $x=$ $\qquad$ .
(c) $\lim _{x \rightarrow-2} f(x)=$ $\qquad$ .
(d) $\lim _{x \rightarrow 1^{-}} f(x)=$ $\qquad$ .
(e) $f(-2)=$ $\qquad$ .
5.(5 points each) Compute each of the following limits exactly (show your work) or state DNE:
a. $\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{(x-2)^{2}}$
b. $\lim _{x \rightarrow 0} \frac{\sin x}{x^{2}+x}$
c. $\lim _{x \rightarrow \infty} \frac{2-x^{2}}{\pi x^{2}-3 x+1}$
d. $\lim _{x \rightarrow \infty} \frac{\sqrt{x}-1}{x+\sqrt{x}}$
6.(5 points each) Find the interval(s) on which the function is continuous.
a. $f(x)=\frac{\ln x}{\sqrt{1-x}}$
b. $h(t)=\sqrt{16-t^{2}}$
7.(10 points)Compute $\lim _{x \rightarrow 1}(x-1)^{2} \sin \frac{1}{x-1} \quad$ (name the theorem used).
8.(10 points) Let

$$
f(x)= \begin{cases}x+1 & \text { when } x \leq 1 \\ 5+a x^{2} & \text { when } x>1\end{cases}
$$

For which value of $a$ will $f$ be continuous at $x=1$ ?

