DEPARTMENT OF MATHEMATICS UNIVERSITY OF KANSAS <u>MATH 121/141, Fall 2008</u> <u>FINAL EXAM</u>

Your Name: _____

Instructor:

Problem	Points	SCORE
1 - 8	80	
9	25	
10	25	
11	25	
12	25	
13	30	
14	30	
15	30	
16	30	
TOTAL	300	

Part A - Multiple Choice Examination

Each right answer is worth 10 points. Select only **one** and

- 1. The curve $y = xe^{-2x}$ has a horizontal tangent line when x is
 - (a) 1
 (b) 0
 (c) 2
 (d) 0.5
 (e) -1
 (f) None of the above
- 2. f(x) is differentiable over the interval (0,3)with f(0) = 0, f(2) = 3, and f(3) = 3. Which of the following is NOT necessarily true?
 - (a) There is a 0 < c < 3 with f(c) = 2.5.
 (b) f'(x) = 3 at some point in [0,3].
 (c) f'(x) is positive at some point in (0,3).
 (d) f'(x) = 0 at some point in [0,3].
 (e) All of the above statements must be true.

3. Which integral matches the Riemann sum?

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} \left(\frac{2n+i}{n} \right)^2$$

(a)
$$\int_0^1 x \, dx$$
 (b) $\int_2^3 (2x+1)^2 \, dx$ (c) $\int_0^1 \frac{dx}{x^3}$ (d) $\int_0^1 (2+x)^2 \, dx$

4. What is the average value of f(x) over the interval [2,4] if f(2) = 2, f(4) = 8, and f'(x) = x?

(a) $\frac{28}{3}$ (b) 5 (c) $\frac{7}{3}$ (d) $\frac{14}{3}$ (e) $\frac{56}{3}$ (f) none of the above.

5. $\lim_{x \to 1} \frac{|x-1|}{x^2-1} =$

(a) $\frac{1}{2}$ (b) $-\frac{1}{2}$ (c) ∞ (d) $-\infty$ (e) does not exist.

 $6. \lim_{h \to 0} \frac{1}{h} \ln \left(\frac{3+h}{3} \right) =$

(a) $\frac{1}{3}$ (b) 1 (c) e^3 (d) $\ln 3$ (e) does not exist.

- 7. If f, f' and f'' are continuous functions on the interval [a,b], such that f'(a) > 0, f'(b) < 0, and f''(x) < 0 for all x in (a,b), then which of the following must be true:
 - (a) There exist a number c, in (a,b), such that f(c) = 0.
 - (b) There exist a number c in (a,b) such that $f(c) = \frac{a+b}{2}$.
 - (c) f(x) has a local minimum in the interval (a,b).

- (d) f(x) has a local maximum in the interval (a,b).
- (e) None of the above.

8. Use Newton's method to solve the equation $x^2 - e^x = 0$, starting with $x_1 = 1$. The next iteration x_2 is:

(a) 1 (b) 0 (c) $\frac{1}{1-e}$ (d) $\frac{1}{2-e}$ (e) None of the above.

9. (25 points) Evaluate $\int_{1}^{\sqrt{3}} \arctan(1/x) dx.$

10. (25 points) A rectangular box with a square base and open top is constructed to have volume of 625 cubic inches. The material used to make the bottom costs 4 cents per square inch and the material used to make the sides costs 2 cents per square inch. Find the dimensions of the box that minimizes the total costs. Justify your answer. 11. (25 points) A pile of sand with volume 12,000,000 π cubic feet is collapsing. As it collapses it remains in the shape of a cone so that the height decreases as the radius increases and the total volume of the sand remains constant. If the height is decreasing at a constant rate of 4ft/min, how fast is the radius increasing at the instant the height is 90 feet and the radius is 200 feet?

12. (25 points) For the implicitly defined curve

$$x^y = y^x,$$

write the equation of the tangent line at the point P(2,2).

13. (**30 points**) Compute the limit

$$\lim_{x \to 1+} \left(\frac{x}{x-1} - \frac{1}{\ln(x)} \right)$$

14. (**30 points**) A water tank in the shape of an inverted cone is buried such that the top of the tank is located 3 meters below the ground. The tank has a radius of 10 meters and is 15 meters deep. If the tank is filled to a depth of 12 meters, how much work, measured in joules, is required to empty the tank by pumping all of the water to ground level? (Assume density of water is $1000 kg/m^3$ and gravitational acceleration is $9.8 m/sec^2$.)

- 15. (30 points) Consider the region R in the first quadrant bounded by $y = x^3$ and y = x.
 - (15 points) Compute the center of mass of the region.
 - (15 points) Compute the volume of the solid obtained by rotating the region R about the y-axis.

16. (**30 points**) Evaluate the improper integral or otherwise show it is divergent

$$\int_0^\infty x^2 e^{-x} dx,$$