DEPARTMENT OF MATHEMATICS UNIVERSITY OF KANSAS
 MATH 121/141, Fall 2008
 FINAL EXAM

Problem	Points	SCORE
$1-8$	80	
9	25	
10	25	
11	25	
12	25	
13	30	
14	30	
15	30	
16	30	
TOTAL	300	

Part A - Multiple Choice Examination

 Each right answer is worth 10 points. Select only one ans1. The curve $y=x e^{-2 x}$ has a horizontal tangent line when x is
(a) 1
(b) 0
(c) 2
(d) 0.5
(e) -1
(f) None of the above
2. $f(x)$ is differentiable over the interval $(0,3)$ with $f(0)=0, f(2)=3$, and $f(3)=3$. Which of the following is NOT necessarily true?
(a) There is a $0<c<3$ with $f(c)=2.5$.
(b) $f^{\prime}(x)=3$ at some point in $[0,3]$.
(c) $f^{\prime}(x)$ is positive at some point in $(0,3)$.
(d) $f^{\prime}(x)=0$ at some point in $[0,3]$.
(e) All of the above statements must be true.
3. Which integral matches the Riemann sum?

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n}\left(\frac{2 n+i}{n}\right)^{2}
$$

$\begin{array}{ll}\text { (a) } \int_{0}^{1} x d x & \text { (b) } \int_{2}^{3}(2 x+1)^{2} d x \\ \int_{0}^{1} \frac{d x}{x^{3}} & \text { (d) } \int_{0}^{1}(2+x)^{2} d x\end{array}$
4. What is the average value of $f(x)$ over the interval $[2,4]$ if $f(2)=2, f(4)=8$, and $f^{\prime}(x)=x$?
(a) $\frac{28}{3}$
(b) 5
(c) $\frac{7}{3}$
(d) $\frac{14}{3}$
(e) $\frac{56}{3}$
none of the above.
5. $\lim _{x \rightarrow 1} \frac{|x-1|}{x^{2}-1}=$
(a) $\frac{1}{2}$
(b) $-\frac{1}{2}$
(c) ∞
(d) $-\infty$
(e) does not exist.
6. $\lim _{h \rightarrow 0} \frac{1}{h} \ln \left(\frac{3+h}{3}\right)=$
(a) $\frac{1}{3}$
(b) 1
(c) e^{3}
(d) $\ln 3$
(e) does not exist.
7. If f, f^{\prime} and $f^{\prime \prime}$ are continuous functions on the interval $[\mathrm{a}, \mathrm{b}]$, such that $f^{\prime}(a)>0, f^{\prime}(b)<$ 0 , and $f^{\prime \prime}(x)<0$ for all x in (a, b), then which of the following must be true:
(a) There exist a number c , in (a, b), such that $f(c)=0$.
(b) There exist a number c in (a, b) such that $f(c)=\frac{a+b}{2}$.
(c) $f(x)$ has a local minimum in the interval (a,b).
(d) $f(x)$ has a local maximum in the interval (a,b).
(e) None of the above.
8. Use Newton's method to solve the equation $x^{2}-e^{x}=0$, starting with $x_{1}=1$. The next iteration x_{2} is:
(a) 1
(b) 0
(c) $\frac{1}{1-e}$
(d) $\frac{1}{2-e}$
(e)
None of the above.
9. ($\mathbf{2 5}$ points) Evaluate

$$
\int_{1}^{\sqrt{3}} \arctan (1 / x) d x
$$

10. ($\mathbf{2 5}$ points) A rectangular box with a square base and open top is constructed to have volume of 625 cubic inches. The material used to make the bottom costs 4 cents per square inch and the material used to make the sides costs 2 cents per square inch. Find the dimensions of the box that minimizes the total costs. Justify your answer.
11. (25 points) A pile of sand with volume $12,000,000 \pi$ cubic feet is collapsing. As it collapses it remains in the shape of a cone so that the height decreases as the radius increases and the total volume of the sand remains constant. If the height is decreasing at a constant rate of $4 \mathrm{ft} / \mathrm{min}$, how fast is the radius increasing at the instant the height is 90 feet and the radius is 200 feet?
12. ($\mathbf{2 5}$ points) For the implicitly defined curve

$$
x^{y}=y^{x}
$$

write the equation of the tangent line at the point $P(2,2)$.
13. (30 points) Compute the limit

$$
\lim _{x \rightarrow 1+}\left(\frac{x}{x-1}-\frac{1}{\ln (x)}\right)
$$

14. (30 points) A water tank in the shape of an inverted cone is buried such that the top of the tank is located 3 meters below the ground. The tank has a radius of 10 meters and is 15 meters deep. If the tank is filled to a depth of 12 meters, how much work, measured in joules, is required to empty the tank by pumping all of the water to ground level? (Assume density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and gravitational acceleration is $9.8 \mathrm{~m} / \mathrm{sec}^{2}$.)
15. (30 points) Consider the region R in the first quadrant bounded by $y=x^{3}$ and $y=x$.

- (15 points) Compute the center of mass of the region.
- (15 points) Compute the volume of the solid obtained by rotating the region R about the y-axis.

16. ($\mathbf{3 0}$ points) Evaluate the improper integral or otherwise show it is divergent

$$
\int_{0}^{\infty} x^{2} e^{-x} d x
$$

